Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D586-D589, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37904617

RESUMO

Many microorganisms produce natural products that are frequently used in the development of medicines and crop protection agents. Genome mining has evolved into a prominent method to access this potential. antiSMASH is the most popular tool for this task. Here we present version 4 of the antiSMASH database, providing biosynthetic gene clusters detected by antiSMASH 7.1 in publicly available, dereplicated, high-quality microbial genomes via an interactive graphical user interface. In version 4, the database contains 231 534 high quality BGC regions from 592 archaeal, 35 726 bacterial and 236 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.


Assuntos
Produtos Biológicos , Vias Biossintéticas , Bases de Dados Genéticas , Genoma Microbiano , Vias Biossintéticas/genética , Família Multigênica , Software
2.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697042

RESUMO

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Assuntos
Inteligência Artificial , Produtos Biológicos , Humanos , Algoritmos , Aprendizado de Máquina , Descoberta de Drogas , Desenho de Fármacos , Produtos Biológicos/farmacologia
3.
Nucleic Acids Res ; 51(W1): W46-W50, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140036

RESUMO

Microorganisms produce small bioactive compounds as part of their secondary or specialised metabolism. Often, such metabolites have antimicrobial, anticancer, antifungal, antiviral or other bio-activities and thus play an important role for applications in medicine and agriculture. In the past decade, genome mining has become a widely-used method to explore, access, and analyse the available biodiversity of these compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free to use web server and as a standalone tool under an OSI-approved open source licence. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in archaea, bacteria, and fungi. Here, we present the updated version 7 of antiSMASH. antiSMASH 7 increases the number of supported cluster types from 71 to 81, as well as containing improvements in the areas of chemical structure prediction, enzymatic assembly-line visualisation and gene cluster regulation.


Assuntos
Computadores , Software , Bactérias/genética , Bactérias/metabolismo , Archaea/genética , Genoma Microbiano , Família Multigênica , Metabolismo Secundário/genética
4.
Nucleic Acids Res ; 51(D1): D603-D610, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399496

RESUMO

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.


Assuntos
Genoma , Genômica , Família Multigênica , Vias Biossintéticas/genética
5.
J Virol Methods ; 312: 114648, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368344

RESUMO

In 2020, the novel coronavirus, SARS-CoV-2, caused a pandemic, which is still raging at the time of writing this. Here, we present results from SpikeSeq, the first published Sanger sequencing-based method for the detection of Variants of Concern (VOC) and key mutations, using a 1 kb amplicon from the recognized ARTIC Network primers. The proposed setup relies entirely on materials and methods already in use in diagnostic RT-qPCR labs and on existing commercial infrastructure offering sequencing services. For data analysis, we provide an automated, open source, and browser-based mutation calling software (https://github.com/kblin/covid-spike-classification, https://ssi.biolib.com/covid-spike-classification). We validated the setup on 195 SARS-CoV-2 positive samples, and we were able to profile 85% of RT-qPCR positive samples, where the last 15% largely stemmed from samples with low viral count. We compared the SpikeSeq results to WGS results. SpikeSeq has been used as the primary variant identification tool on > 10.000 SARS-CoV-2 positive clinical samples during 2021. At approximately 4€ per sample in material cost, minimal hands-on time, little data handling, and a short turnaround time, the setup is simple enough to be implemented in any SARS-CoV-2 RT-qPCR diagnostic lab. Our protocol provides results that can be used to choose antibodies in a clinical setting and for the tracking and surveillance of all positive samples for new variants and known ones such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) Delta (B.1.617.2), Omicron BA.1(B.1.1.529), BA.2, BA.4/5, BA.2.75.x, and many more, as of October 2022.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus/genética , Mutação
6.
ACS Chem Biol ; 17(9): 2411-2417, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36040247

RESUMO

Actinomycetes make a wealth of complex, structurally diverse natural products, and a key challenge is to link them to their biosynthetic gene clusters and delineate the reactions catalyzed by each of the enzymes. Here, we report the biosynthetic gene cluster for pyracrimycin A, a set of nine genes that includes a core nonribosomal peptide synthase (pymB) that utilizes serine and proline as precursors and a monooxygenase (pymC) that catalyzes Baeyer-Villiger oxidation. The cluster is similar to the one for brabantamide A; however, pyracrimycin A biosynthesis differs in that feeding experiments with isotope-labeled serine and proline suggest that a ring opening reaction takes place and a carbon is lost from serine downstream of the oxidation reaction. Based on these data, we propose a full biosynthesis pathway for pyracrimycin A.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , Carbono/metabolismo , Oxigenases de Função Mista/metabolismo , Família Multigênica , Prolina/metabolismo , Pirróis , Serina/metabolismo , Streptomyces/metabolismo
7.
Nucleic Acids Res ; 50(D1): D736-D740, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718689

RESUMO

As a result of the continuous evolution of drug resistant bacteria, new antibiotics are urgently needed. Encoded by biosynthetic gene clusters (BGCs), antibiotic compounds are mostly produced by bacteria. With the exponential increase in the number of publicly available, sequenced genomes and the advancements of BGC prediction tools, genome mining algorithms have uncovered millions of uncharacterized BGCs for further evaluation. Since compound identification and characterization remain bottlenecks, a major challenge is prioritizing promising BGCs. Recently, researchers adopted self-resistance based strategies allowing them to predict the biological activities of natural products encoded by uncharacterized BGCs. Since 2017, the Antibiotic Resistant Target Seeker (ARTS) facilitated this so-called target-directed genome mining (TDGM) approach for the prioritization of BGCs encoding potentially novel antibiotics. Here, we present the ARTS database, available at https://arts-db.ziemertlab.com/. The ARTS database provides pre-computed ARTS results for >70,000 genomes and metagenome assembled genomes in total. Advanced search queries allow users to rapidly explore the fundamental criteria of TDGM such as BGC proximity, duplication and horizontal gene transfers of essential housekeeping genes. Furthermore, the ARTS database provides results interconnected throughout the bacterial kingdom as well as links to known databases in natural product research.


Assuntos
Bases de Dados Factuais , Farmacorresistência Bacteriana/genética , Metagenoma/genética , Software , Antibacterianos , Bactérias/efeitos dos fármacos , Bactérias/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano
8.
Microbiol Resour Announc ; 10(38): e0080521, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553997

RESUMO

We report the sequencing, assembly, and annotation of the genome of Amycolatopsis sp. CA-230715, a potentially interesting producer of natural products. The genome of CA-230715 was sequenced using PacBio, Illumina, and Nanopore technologies. It consists of a circular 10,363,158-nucleotide (nt) chromosome and a circular 12,080-nt plasmid.

9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299187

RESUMO

By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.


Assuntos
Proteínas de Bactérias/genética , Benzo(a)Antracenos/metabolismo , Família Multigênica , Proteínas Recombinantes/genética , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Benzopiranos , Regulação Bacteriana da Expressão Gênica , Glicosídeos/biossíntese , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Trissacarídeos/biossíntese
10.
ACS Chem Biol ; 16(8): 1456-1468, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34279911

RESUMO

Actinobacteria have been a rich source of novel, structurally complex natural products for many decades. Although the largest genus is Streptomyces, from which the majority of antibiotics in current and past clinical use were originally isolated, other less common genera also have the potential to produce a wealth of novel secondary metabolites. One example is the Kutzneria genus, which currently contains only five reported species. One of these species is Kutzneria albida DSM 43870T, which has 46 predicted biosynthetic gene clusters and is known to produce the macrolide antibiotic aculeximycin. Here, we report the isolation and structural characterization of two novel 30-membered glycosylated macrolides, epemicins A and B, that are structurally related to aculeximycin, from a rare Kutzneria sp. The absolute configuration for all chiral centers in the two compounds is proposed based on extensive 1D and 2D NMR studies and bioinformatics analysis of the gene cluster. Through heterologous expression and genetic inactivation, we have confirmed the link between the biosynthetic gene cluster and the new molecules. These findings show the potential of rare Actinobacteria to produce new, structurally diverse metabolites. Furthermore, the gene inactivation represents the first published report to genetically manipulate a representative of the Kutzneria genus.


Assuntos
Actinobacteria/química , Antibacterianos/farmacologia , Macrolídeos/farmacologia , Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Macrolídeos/química , Macrolídeos/isolamento & purificação , Macrolídeos/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Domínios Proteicos , Estereoisomerismo
11.
Nucleic Acids Res ; 49(W1): W29-W35, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33978755

RESUMO

Many microorganisms produce natural products that form the basis of antimicrobials, antivirals, and other drugs. Genome mining is routinely used to complement screening-based workflows to discover novel natural products. Since 2011, the "antibiotics and secondary metabolite analysis shell-antiSMASH" (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free-to-use web server and as a standalone tool under an OSI-approved open-source license. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in bacteria and fungi. Here, we present the updated version 6 of antiSMASH. antiSMASH 6 increases the number of supported cluster types from 58 to 71, displays the modular structure of multi-modular BGCs, adds a new BGC comparison algorithm, allows for the integration of results from other prediction tools, and more effectively detects tailoring enzymes in RiPP clusters.


Assuntos
Produtos Biológicos/metabolismo , Genoma Microbiano , Software , Bactérias/genética , Vias Biossintéticas/genética , Fungos/genética , Metabolismo Secundário/genética
12.
Nucleic Acids Res ; 49(D1): D639-D643, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152079

RESUMO

Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.


Assuntos
Mineração de Dados , Bases de Dados como Assunto , Enzimas/classificação , Vias Biossintéticas/genética , Família Multigênica , Ferramenta de Busca
13.
Nucleic Acids Res ; 49(D1): D490-D497, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33010170

RESUMO

Computational analysis of biosynthetic gene clusters (BGCs) has revolutionized natural product discovery by enabling the rapid investigation of secondary metabolic potential within microbial genome sequences. Grouping homologous BGCs into Gene Cluster Families (GCFs) facilitates mapping their architectural and taxonomic diversity and provides insights into the novelty of putative BGCs, through dereplication with BGCs of known function. While multiple databases exist for exploring BGCs from publicly available data, no public resources exist that focus on GCF relationships. Here, we present BiG-FAM, a database of 29,955 GCFs capturing the global diversity of 1,225,071 BGCs predicted from 209,206 publicly available microbial genomes and metagenome-assembled genomes (MAGs). The database offers rich functionalities, such as multi-criterion GCF searches, direct links to BGC databases such as antiSMASH-DB, and rapid GCF annotation of user-supplied BGCs from antiSMASH results. BiG-FAM can be accessed online at https://bigfam.bioinformatics.nl.


Assuntos
Vias Biossintéticas/genética , Bases de Dados Genéticas , Família Multigênica , Clostridium/genética , Ferramenta de Busca , Streptomyces/genética
14.
Nat Protoc ; 15(8): 2470-2502, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32651565

RESUMO

Streptomycetes are prominent sources of bioactive natural products, but metabolic engineering of the natural products of these organisms is greatly hindered by relatively inefficient genetic manipulation approaches. New advances in genome editing techniques, particularly CRISPR-based tools, have revolutionized genetic manipulation of many organisms, including actinomycetes. We have developed a comprehensive CRISPR toolkit that includes several variations of 'classic' CRISPR-Cas9 systems, along with CRISPRi and CRISPR-base editing systems (CRISPR-BEST) for streptomycetes. Here, we provide step-by-step protocols for designing and constructing the CRISPR plasmids, transferring these plasmids to the target streptomycetes, and identifying correctly edited clones. Our CRISPR toolkit can be used to generate random-sized deletion libraries, introduce small indels, generate in-frame deletions of specific target genes, reversibly suppress gene transcription, and substitute single base pairs in streptomycete genomes. Furthermore, the toolkit includes a Csy4-based multiplexing option to introduce multiple edits in a single experiment. The toolkit can be easily extended to other actinomycetes. With our protocol, it takes <10 d to inactivate a target gene, which is much faster than alternative protocols.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Streptomyces/genética , Sequência de Bases , Plasmídeos/genética
15.
Synth Syst Biotechnol ; 5(2): 99-102, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596519

RESUMO

CRISPR/Cas9 systems are an established tool in genome engineering. As double strand breaks caused by the standard Cas9-based knock-out techniques can be problematic in some organisms, new systems were developed that can efficiently create knock-outs without causing double strand breaks to elegantly sidestep these issues. The recently published CRISPR-BEST base editor system for actinobacteria is built around a C to T or A to G base exchange. These base editing systems however require additional constraints to be considered for designing the sgRNAs. Here, we present an updated version of the interactive CRISPy-web single guide RNA design tool https://crispy.secondarymetabolites.org/that was built to support "classical" CRISPR and now also CRISPR-BEST workflows.

16.
Nucleic Acids Res ; 48(W1): W546-W552, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32427317

RESUMO

Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the 'Antibiotic Resistant Target Seeker' (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Software , Vias Biossintéticas/genética , Mineração de Dados , Genes Bacterianos , Metagenômica
17.
Front Microbiol ; 11: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132989

RESUMO

Streptomyces antibiotic regulatory protein (SARP) family regulators are well-known activators of antibiotic biosynthesis in streptomycetes. The respective genes occur in various types of antibiotic gene clusters encoding, e.g., for polyketides, ribosomally and non-ribosomally synthesized peptides, or ß-lactam antibiotics. We found that overexpression of the SARP-type regulator gene papR2 from Streptomyces pristinaespiralis in Streptomyces lividans leads to the activation of the silent undecylprodigiosin (Red) gene cluster. The activation happens upon the inducing function of PapR2, which takes over the regulatory role of RedD, the latter of which is the intrinsic SARP regulator of Red biosynthesis in S. lividans. Due to the broad abundance of SARP genes in different antibiotic gene clusters of various actinomycetes and the uniform activating principle of the encoded regulators, we suggest that this type of regulator is especially well suited to be used as an initiator of antibiotic biosynthesis in actinomycetes. Here, we report on a SARP-guided strategy to activate antibiotic gene clusters. As a proof of principle, we present the PapR2-driven activation of the amicetin/plicacetin gene cluster in the novel Indonesian strain isolate Streptomyces sp. SHP22-7.

18.
Synth Syst Biotechnol ; 5(1): 11-18, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32021916

RESUMO

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first demonstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

19.
Nucleic Acids Res ; 48(D1): D454-D458, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31612915

RESUMO

Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , Família Multigênica , Software , Vias Biossintéticas/genética , Anotação de Sequência Molecular
20.
Proc Natl Acad Sci U S A ; 116(41): 20366-20375, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548381

RESUMO

Streptomycetes serve as major producers of various pharmacologically and industrially important natural products. Although CRISPR-Cas9 systems have been developed for more robust genetic manipulations, concerns of genome instability caused by the DNA double-strand breaks (DSBs) and the toxicity of Cas9 remain. To overcome these limitations, here we report development of the DSB-free, single-nucleotide-resolution genome editing system CRISPR-BEST (CRISPR-Base Editing SysTem), which comprises a cytidine (CRISPR-cBEST) and an adenosine (CRISPR-aBEST) deaminase-based base editor. Specifically targeted by an sgRNA, CRISPR-cBEST can efficiently convert a C:G base pair to a T:A base pair and CRISPR-aBEST can convert an A:T base pair to a G:C base pair within a window of approximately 7 and 6 nucleotides, respectively. CRISPR-BEST was validated and successfully used in different Streptomyces species. Particularly in nonmodel actinomycete Streptomyces collinus Tü365, CRISPR-cBEST efficiently inactivated the 2 copies of kirN gene that are in the duplicated kirromycin biosynthetic pathways simultaneously by STOP codon introduction. Generating such a knockout mutant repeatedly failed using the conventional DSB-based CRISPR-Cas9. An unbiased, genome-wide off-target evaluation indicates the high fidelity and applicability of CRISPR-BEST. Furthermore, the system supports multiplexed editing with a single plasmid by providing a Csy4-based sgRNA processing machinery. To simplify the protospacer identification process, we also updated the CRISPy-web (https://crispy.secondarymetabolites.org), and now it allows designing sgRNAs specifically for CRISPR-BEST applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Streptomyces coelicolor/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...